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S U M M A R Y
Cross-correlation-based seismic interferometry is commonly used to retrieve surface-wave
Green’s functions from ambient seismic noise recordings. This approach requires that seismic
sources are isotropically distributed in all directions around two receivers. However, this
assumption is rarely valid in practice. Thus full-waveform inversion theory has recently been
applied to seismic noise cross-correlation functions, functions that include both source and
structure information. Source information (e.g. location or strength) is essential for accurate
structure information estimation. In this paper, we explain physically two types of source
sensitivity kernels: one derived from traveltime misfits and the other derived from waveform
misfits. We use these kernels for source inversion and demonstrate the benefits of using
multicomponent cross-correlations in this source estimation process.

Key words: Waveform inversion; Seismic interferometry; Seismic noise; Surface waves and
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1 I N T RO D U C T I O N

One nowadays commonly cross-correlates ambient seismic recordings of two sensors to retrieve the surface-wave Green’s functions between
the two sensors (e.g. Snieder 2004). Assuming the cross-correlation function is the band-limited Green’s functions, one can estimate
subsurface geologic structures (e.g. Shapiro et al. 2005). The cross-correlation method, or seismic interferometry, requires that seismic
sources are isotropically distributed in all directions around two receivers (e.g. Wapenaar & Fokkema 2006). However, this assumption is
rarely valid in practice. An anisotropic source distribution will bias the retrieved Green’s functions and the resulting subsurface geologic
inferences (e.g. Yang & Ritzwoller 2008; Yao & van Der Hilst 2009). To reduce this bias, approaches have been developed to compensate for
the anisotropic source distribution. For example, one approach uses beamforming (e.g. Rost & Thomas 2002) to estimate the seismic source
direction and then uses this direction to correct the retrieved Green’s function or surface-wave dispersion estimates (e.g. Nakata et al. 2015;
Cheng et al. 2016). When using beamforming, one assumes that the underground is isotropic and laterally homogeneous. This assumption
for the subsurface structures is also not always valid. For anisotropic seismic source distributions and laterally heterogeneous subsurface
structures, it has been proposed not to use the seismic cross-correlations to approximate Green’s functions, but instead to apply full-waveform
inversion theory to the seismic cross-correlations (Tromp et al. 2010; Fichtner 2015). The seismic cross-correlations include both source
distribution and subsurface structure information. If one wants to estimate the subsurface structure, one has to first (e.g. Nakata et al. 2015;
Cheng et al. 2016), or simultaneously (e.g. Yao & van Der Hilst 2009; Harmon et al. 2010), unravel the anisotropic source information.

Source distribution estimation can aid studies of the dynamic processes that generate ambient seismic noise. For example, high-frequency
(>1 Hz) ambient seismic noise can be used to monitor underground hydrothermal acoustic sources (e.g. Cros et al. 2011) and microseismic
sources at the exploration scale (e.g. Corciulo et al. 2012); 5–20 s period ambient seismic noise can be used to study the primary and secondary
microseisms (e.g. Tian & Ritzwoller 2015; Juretzek & Hadziioannou 2016); 100 s period noise can be used to study the Earth hum (e.g. Rhie
& Romanowicz 2006; Nishida & Fukao 2007; Traer & Gerstoft 2014; Ardhuin et al. 2015).

Rayleigh waves dominate ambient seismic noise. Multicomponent Rayleigh-wave data can bring benefits for estimating both source
distributions and subsurface structures. The important multicomponent data for Rayleigh waves are the vertical (Z) and radial (R) components,
where the R direction is parallel to a line or great-circle path between two sensors. If we assume vertical-force seismic sources, the Z−Z
component cross-correlation (CZZ) is sensitive to the seismic sources in all directions, while the R−R component cross-correlation (CRR) is
more sensitive to in-line seismic sources than out-of-line sources (e.g. Haney et al. 2012; Xu & Mikesell 2017). Multicomponent data can
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also help to characterize Rayleigh waves more accurately than only the Z-component data (e.g. Boaga et al. 2013; Gribler et al. 2016) and
constrain the shear-wave velocity inversions (e.g. Arai & Tokimatsu 2004). In this paper, we focus on source estimation rather than structure
estimation.

There are mainly two methods for locating seismic sources, an imaging method and an adjoint-based inversion method. When using
the imaging method, one applies time reversal to recorded seismic waveforms and then finds the location where the reversed waveforms are
most similar to each other. This method includes backprojection (e.g. Ishii et al. 2005), reverse-time migration (e.g. Artman et al. 2010)
and matched-field processing (e.g. Cros et al. 2011). These approaches do not involve so-called inversion, as compared to the adjoint-based
inversion method. The adjoint-based inversion method combines time reversal and iterative optimization (e.g. Liu et al. 2004). When using
either of these two methods, one assumes that the subsurface structure is known and then solves for the source parameters (e.g. location or
moment tensors). Thus we study multicomponent cross-correlations in the context of ambient noise full-waveform inversion in this paper.

We adopt full-waveform inversion theory to estimate seismic source distributions. We compare the use of traveltime and waveform
information in inversion, and we discuss the source sensitivity kernels for CZZ and CRR. We present the complete inversion scheme in Section 2.
In Section 3, we present the kernels for a single frequency and a frequency band, and we explain the physics behind these kernels. We then
apply the multicomponent source kernels in three synthetic data examples and estimate the source distributions (Section 4). Finally, we discuss
factors that affect the accuracy of the inversions in Section 5.

2 C RO S S - C O R R E L AT I O N I N V E R S I O N S C H E M E

We use full-waveform inversion theory to estimate seismic source distributions. In an inversion process, we define a misfit function to
measure the difference between the synthetic and observed data (Section 2.1). The observed data in this paper are observed Rayleigh-wave
cross-correlations. We compute synthetic cross-correlations using a forward modelling process based on the source model parameters, that
is the source strength distribution (Section 2.2). We then update the source model parameters with an inversion method that minimizes the
misfit function (Section 2.4). This is a common strategy in non-linear inverse problems (e.g. Aster et al. 2011).

2.1 Misfit functions

One can define the misfit function (χ ) based on physical properties of waveforms, for example traveltimes (e.g. Luo & Schuster 1991; Dahlen
et al. 2000), envelopes (e.g. Fichtner et al. 2008; Bozdağ et al. 2011) or raw waveforms (e.g. Tromp et al. 2005). Here we use two L2–norm
misfit functions: Rayleigh-wave waveform cross-correlation difference (eq. 1) and Rayleigh-wave traveltime difference (eq. 2). We define the
waveform misfit function as

χ = 1

2

∑
mn

∑
rArB

∫
[w(t)(Cmn(rA, rB, t) − Co

mn(rA, rB, t))]2dt, (1)

where w(t) is a time window, and Cmn(rA, rB, t) and Co
mn are the synthetic and observed cross-correlations, respectively. The cross-correlations

are between sensor rA and rB; m, n represent the components, vertical (Z) or radial (R), from each of the two sensors, respectively. We use
the time window to focus on certain parts of the observed cross-correlations (e.g. Maggi et al. 2009; Fichtner et al. 2017). We define the
traveltime misfit function following Luo & Schuster (1991) as

χ = 1

2

∑
mn

∑
rArB

(Tsyn(rA, rB) − Tobs(rA, rB))2, (2)

where Tsyn and Tobs represent the traveltime of the main Rayleigh-wave waveform in the synthetic and observed cross-correlations, respectively.
Luo & Schuster (1991) and Dahlen et al. (2000) describe how to measure the traveltime difference, Tsyn − Tobs. We restate this measurement
procedure in Appendix A. In this paper, we call the source inversions using the waveform and the traveltime misfit functions as the waveform
inversion and the traveltime inversion, respectively.

2.2 Forward modelling process

We need synthetic data to calculate the misfit function. We compute synthetic cross-correlations from a source distribution with the forward
modelling process. People have discussed the whole forward modelling process explicitly (e.g. Wapenaar & Fokkema 2006; Tromp et al.
2010; Fichtner et al. 2017). We here review the main steps in the forward modelling process implemented in the frequency domain. We first
write the seismic record at one sensor (rA) due to many sources as

Ump(rA, ω) =
∫

V
Gmp(rA, rs, ω)Fp(rs, ω)drs, (3)

where Gmp(rA, rs, ω) is the Green’s function representing the mth component displacement response at location rA due to a point force in the
p direction at the source position rs, ω is the angular frequency, and Fp(rs, ω) is the the source wavelet spectrum. We then cross-correlate two
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Multicomponent cross-correlation source inversion 1763

sensor (rA and rB) records as

Cmn(rA, rB, ω) = Ump(rA, ω)U ∗
np(rB, ω)

=
∫

V
Gmp(rA, rs, ω)G∗

np(rB, rs, ω)Sp(rs, ω)drs, (4)

where the asterisk represents complex conjugation. Here we assume that all seismic sources are independent, thus

Sp(rs, ω) = Fp(rs, ω)F∗
p (rs, ω). (5)

We note that the source strength, Sp, should be non-negative for all frequencies.
The forward modelling process is computationally expensive. Eq. (4) requires one simulation for one point force source at rs in the p

direction. If we have many seismic sources like traffic, we have to conduct many simulations. Therefore people have proposed to decrease the
computation by using wavefield reciprocity (e.g. Tromp et al. 2010; Ermert et al. 2017). From the reciprocity (e.g. Aki & Richards 2002),

Gmp(rA, rs) = G pm(rs, rA), (6)

and we can modify the forward simulations by activating seismic sources at sensors (rA), instead of at real seismic sources (rs). The number of
sensors is normally less than the number of potential seismic sources in the source grid. This decreases the forward computation dramatically.

2.3 Fréchet derivative with respect to source strength

Source inversion requires the Fréchet derivative of the misfit function due to perturbations in the source distribution (e.g. Fichtner 2015;
Sager et al. 2018). Here we review the steps to derive the Fréchet derivative. First, we write the perturbation of the misfit function due to a
perturbation in the synthetic cross-correlation as (e.g. Fichtner 2015)

δχ (rA, rB) =
∫

ω

δCmn(rA, rB, ω) f dω, (7)

where f is the adjoint source. The adjoint source is derived from the misfit function, and we show how we derive the traveltime and waveform
adjoint sources in Appendices A and B, respectively.

We then write the perturbation of the synthetic cross-correlation (eq. 4) with a first-order term as

δCmn(rA, rB, ω) =
∫

V
Gmp(rA, rs, ω)G∗

np(rB, rs, ω)δSp(rs, ω)drs

+
∫

V
δ[Gmp(rA, rs, ω)G∗

np(rB, rs, ω)]Sp(rs, ω)drs, (8)

where the first part in the right hand side is for perturbations in the source, and the second part is for perturbations in the Green’s functions.
These two parts provide Fréchet source and structure derivatives (Fichtner 2015). We focus on the source derivative in this paper; thus we
assume that the subsurface structure and the Green’s functions are known, such that δ[Gmp(rA, rs, ω)G∗

np(rB, rs, ω)] = 0. This assumption is
common in source studies (e.g. Liu et al. 2004; Ishii et al. 2005; Artman et al. 2010). We thus write the perturbation of the cross-correlation
with respect to source strength perturbations as

δCmn(rA, rB, ω) =
∫

V
Gmp(rA, rs, ω)G∗

np(rB, rs, ω)δSp(rs, ω)drs . (9)

We then write the Fréchet derivative of the misfit function due to perturbations in the source strength by combining eqs (7) and (9) as

δχ (rA, rB) =
∫

ω

∫
V

Gmp(rA, rs, ω)G∗
np(rB, rs, ω)δSp(rs, ω) f drsdω, (10)

=
∫

ω

∫
V

Kmn(rA, rB, ω)δSp(rs, ω)drsdω, (11)

where

Kmn(rA, rB, ω) = Gmp(rA, rs, ω)G∗
np(rB, rs, ω) f. (12)

Kmn is called the source kernel (e.g. Fichtner et al. 2017). The kernel indicates the sensitivity of the misfit function to the source strength S p

at rs. In practice, it is often assumed that the spectral shapes for all sources ( Sp) are similar (e.g. Ermert et al. 2017). Thus we assume that
S0

p N = Sp , where S0
p is the assumed source spectrum and N is a ratio. N is always positive due to eq. (5). Finally, we rewrite eqs (11) and (12)

as

δχ (rA, rB) =
∫

ω

∫
V

Kmn(rA, rB, ω)δN (rs)drsdω (13)

with

Kmn(rA, rB, ω) = Gmp(rA, rs, ω)G∗
np(rB, rs, ω)S0

p f (14)

= [Gmp(rA, rs, ω)F0
p ][Gnp(rB, rs, ω)F0

p ]∗ f, (15)

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article-abstract/218/3/1761/5510447 by Boise State U

niversity user on 03 July 2019



1764 Z. Xu et al.

Table 1. The homogeneous and isotropic elastic halfspace model parameters used in the simulation.

Model Vp Vs Density Thickness
(m s–1) (m s–1) (kg m–3) (m)

True 2800 1500 2300 ∞
Higher 3800 2000 2300 ∞
Lower 1900 1000 2300 ∞

where S0
p = F0

p (F0
p )∗. Eq. (15) is convenient to use because we can easily compute synthetic seismic recordings (Gmp F0

p ) with the same
numerical simulations used to create synthetic cross-correlation functions. Thus in the following context, we use N(rs) as the source strength
distribution model and use eq. (15) to calculate source sensitivity kernels.

2.4 Inversion strategy

We use a gradient-descent strategy (e.g. Ermert et al. 2017), which is an iterative method. The traveltime misfit function (eq. 2) is a non-linear
problem and thus requires an iterative method. We can, however, minimize the waveform L2–norm misfit function (eq. 1) using direct methods
because the source strengths are linearly related to the crosscorrelation waveforms in the frequency domain (eq. 4). While it is useful to
recognize this last point, the waveform misfit function can be too large to solve with linear inversion methods directly due to the potential for
a large number of waveforms and source locations. Thus iterative methods are a better option for the sake of memory in such large problems
(e.g. Aster et al. 2011), and we choose to solve the waveform misfit function with the same iterative method as the traveltime mistfit function.
Another way to address this problem is using the adjoint operator (e.g. Thorson & Claerbout 1985), for example, the matched-field processing
method (e.g. Cros et al. 2011; Corciulo et al. 2012) and microseismic reverse-time migration (e.g. Artman et al. 2010). We discuss the link
between the waveform inversion, matched-field processing, and reverse-time migration methods in Appendix C.

In the waveform inversion, we sum the kernels among all sensor pairs in a frequency band [ω1, ω2] as

K =
∑
mn

∑
rArB

∫ ω2

ω1

Kmn(rA, rB, ω)dω. (16)

If we only use vertical data, K is a summed KZZ among all sensor pairs; if we use both CZZ and CRR, K = KZZ + KRR among all sensor pairs.
We then multiply the summed kernel (K) with a step size (p) to update the source distribution in the ith iteration as

Ni+1(rs) = Ni (rs) − pK . (17)

However, if we subtract the product (pK) directly, negative source strength values may appear. A negative source strength is not physical
because of eq. (5). Thus we need to make sure that the updated source strengths are non-negative. To achieve this, we apply a positivity
constraint (Johansen 1977) to the inversion, where δln[N(rs)] = δN(rs)/N(rs). Rearranging this relationship and replacing δN(rs), eq. (13)
becomes

δχ (rA, rB) =
∑
mn

∑
rArB

∫
ω

∫
V

Kmn(rA, rB, ω)N (rs)δln[N (rs)]drsdω, (18)

where ln is the natural logarithm. We then update the source strength distribution as

ln[Ni+1(rs)] = ln[Ni (rs)] − pNi (rs)K , (19)

which is equivalent to

Ni+1(rs) = Ni (rs)e−pNi (rs )K , (20)

and where the exponential term is always positive, thus ensuring the source model will always be positive as long as the starting model is
positive.

We choose the step size (p) from many potential step size values. We update the source strength distribution (Ni) using eq. (20) and the
potential step sizes (e.g. p = 10−6, 10−5, ...10−1). For each step size, we have an updated source distribution model (Ni + 1), and we compute
synthetic cross-correlations using eq. (4). We then calculate the corresponding misfit function. Among these misfit values, we choose the
step size that gives the minimum misfit. If the minimum misfit is less than an update criteria (Cu), we adopt the step size and update the
source model; if not, we do not update this iteration and instead expand the frequency band. Details about the actual inversion algorithm are
presented in Section 4.

3 R AY L E I G H - WAV E S O U RC E K E R N E L S

We present and describe the source kernels for Rayleigh waves of multicomponent cross-correlations (CZZ and CRR). In calculating the kernels,
we require synthetic seismic recordings and adjoint sources (eq. 15). We use a homogeneous elastic halfspace model (Table 1, True model)
and SPECFEM3D (Komatitsch & Tromp 2002) to simulate the synthetic seismic recordings. We set the model to be a 3-km-length cube. We
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Figure 1. (a) Diagram of locations of the 6720 point sources and two receivers on the free surface. The black points represent point sources; the two black
triangles represent the two receivers, rA and rB. (b) The vertical–vertical (CZZ) and radial–radial (CRR) cross-correlation between the two receivers due to all
sources in (a). The two cross-correlations are normalized by each maximum amplitude. The two grey blocks indicate two time windows, −0.2 to 0.2 and 0.5
to 0.8 s.

set the top surface of the cube to be a free surface and the other surfaces to be perfectly matched layers. We discretize the whole cube into
30-m-length cubes. In one simulation, the time step is 0.0005 s and we propagate signals for 5000 time steps (i.e. 2.5 s). We simulate Z and R
component data on the two receivers (rA and rB) due to 6720 vertical-point-force sources on the free surface (Fig. 1a). Each source emits a
10 Hz Ricker wavelet with an amplitude factor of 1015 in SPECFEM3D [Fz in eq. (5), also F0

z in eq. (15)]. Following Section 2.2, we do 4
simulations (Z − and R − direction point forces at each receiver), and record at the 6720 seismic source locations. We compute CZZ and CRR

(eq. 4). The phase of CZZ is identical to that of CRR (Fig. 1b).
We focus on the sensitivity kernels for synthetic data in this section to study the kernel structure. Therefore we use two modified misfit

functions:

χ (rA, rB) = Tsyn (21)

and

χ (rA, rB) = 1

2

∫
[w(t)Cmn(rA, rB, t)]2dt. (22)

These two misfit functions indicate the traveltime and energy for main waveforms in the synthetic cross-correlations, respectively (Fichtner
et al. 2017). The corresponding adjoint sources are presented in Appendices A and B. The corresponding source kernels determine how
source strength changes affect the traveltime or waveform energy.

3.1 Monochromatic source kernels

We now describe the monochromatic cross-correlation source kernels from a physical point of view. In a homogeneous and isotropic medium,
under the far-field assumption, the vertical-component fundamental-mode Rayleigh-wave Green’s function due to a vertical point force can
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Figure 2. Diagram of the location of a point source (star) and two sensors (triangles). The dashed hyperbola indicates potential source locations, where rAs −
rBs is constant. The radial direction, R̂, is parallel to the line linking the two sensors, rA and rB.
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Figure 3. Traveltime (top row) and waveform-energy (bottom row) source kernels computed at each grid node for 5 Hz direct Rayleigh waves in the causal
parts of CZZ (left-hand column) and CRR (right-hand column). The solid hyperbolas represent 2Nπ phase and the dashed represent (2N − 1)π . The direct
Rayleigh-wave time window is from 0.5 to 0.8 s in Fig. 1. These hyperbolas are asymmetric due to the value of φobs in eqs (27) and (28).

be written as (e.g. Fan & Snieder 2009):

G Z Z (r, ω) =
√

1

8πωr/c
e−i(ωr/c+π/4), (23)

where ω is the angular frequency, i is the imaginary unit, c is the surface-wave phase velocity and r is the distance between source and
receiver. The negative sign in the exponential part of eq. (23) is due to the Fourier transform convention we use (Appendix D). If we consider
a vertical-point-force seismic source on the free surface at rs, the surface-wave cross-correlation between two sensors (rA and rB) can be
written as

CZ Z (rA, rB, ω, rs) = 1

8πω/c

√
1

rAsrBs
e−iω(rAs−rBs )/c. (24)
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Figure 4. 2–8 Hz traveltime (a, b, c, d) and waveform-energy (e, f, g, h) source kernels for Rayleigh waves in CZZ (left-hand panel) and CRR (right-hand panel).
a, b, e, f are for direct Rayleigh waves (0.5–0.8 s in Fig. 1b); c, d, g and h are for early-arrival Rayleigh waves (–0.2 to 0.2 s in Fig. 1b).

Following the same logic, and using

G RZ (r, ω) = H

V

√
1

8πωr/c
e−i(ωr/c−π/4), (25)

where H/V is the ratio of the horizontal-to-vertical motion (e.g. Haney et al. 2012), we can write

CR R(rA, rB, ω, rs) =
(

H

V

)2 1

8πω/c

√
1

rAsrBs
cos(θAs)cos(θBs)e−iω(rAs−rBs )/c, (26)

where θAs is the angle between the surface-wave propagation path and the radial direction (Fig. 2). The phase of the Rayleigh wave is −ω(rAs

− rBs)/c in eqs (24) and (26). These phases remain constant if rAs − rBs remains constant; rAs − rBs will be constant if rs is on a hyperbola
with foci at rA and rB (Fig. 2). Thus a certain phase corresponds to a hyperbola, comprised of rs locations. For CZZ and CRR, we focus on two
specific phases:

− ω(rAs − rBs)

c
= φobs + 2Nπ, (27)
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1768 Z. Xu et al.

Table 2. Traveltime and waveform inversion scheme details.

Traveltime Waveform

Frequency band used in calculating
misfit function and kernel 2–4/6/8/12/16 Hz
Time window 0.6 s centered at the

peak of cross-correlation −1 to 1 s
Cross-correlation normalization term Maximum in all CZZ or CRR

Smooth source strength per iteration Yes No
Update criteria, Cu 100 per cent 99 per cent
Stop criteria, Cs 0.01 0.01

Figure 5. One source within array inversion results and the corresponding CZZ waveforms. (a) The true source strength distribution is zero everywhere except
an in-array source area (square). Triangles are receivers. From the initial seismic source distribution model (d), we invert with the ZZ traveltimes (b), ZZ + RR
traveltimes (c), ZZ waveforms (e) and ZZ + RR waveforms (f). We plot the synthetic CZZ based on the traveltime inversion results in (g) and the waveform
inversion results in (h), along with the observed CZZ. Each waveform here is normalized by its maximum amplitude for comparison. Note that the initial source
strength (d) at each receiver location is zero and is masked by the triangles.

and

− ω(rAs − rBs)

c
= φobs + (2N − 1)π, (28)

where φobs is the phase of the observed waveform at N = 0, ±1, ±2, ±3... and frequency ω. The two phases lead to two kinds of hyperbolas
(Fig. 3): φobs + 2Nπ phase leads to the same phase (φobs); the φobs + (2N − 1)π leads to the opposite phase (φobs ± π ). These hyperbolas
are determined by the value of φobs, which also change with frequency (e.g. Xu et al. 2017).

These two kinds of cross-correlations contribute ±1 to the amplitude spectrum, but 0 to the phase spectrum of the Rayleigh wave in
CZZ over the time window w(t). If we increase or decrease the source strength along one of these hyperbolas, the arrival time of the Rayleigh
waveform will not change because the corresponding phase spectrum does not change; however, the waveform energy will increase or decrease,
respectively. This is because the sources along the hyperbola generate waveforms with exactly the same phase and arrival time. Therefore
the hyperbola is located along the zero value in the traveltime kernels, and along the maxima and minima of the waveform-energy kernels
(Fig. 3). Chmiel et al. (2018) observed similar source kernels with dense active-source seismic recordings and calculated the surface-wave
phase velocities by fitting hyperbolas to the kernels using eqs (27) and (28).
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Multicomponent cross-correlation source inversion 1769

Figure 6. Two sources within array inversion results and the corresponding waveforms. (a) The true source strength is zero everywhere except two source areas
(squares) within the array (triangles). From the same initial source distribution model (d) as in Fig. 5, we invert the ZZ traveltimes (b), ZZ + RR traveltimes
(c), ZZ waveforms (e) and ZZ + RR waveforms (f). We plot the synthetic CZZ based on the traveltime inversion results in (g) and the waveform inversion results
in (h), along with the observed CZZ. Each waveform here is normalized by its maximum amplitude for comparison. Note that the initial source strength (d) at
each receiver location is zero and is masked by the triangles.

We point out that the traveltime and waveform kernels for RR are stronger in the in-line areas than out-of-line areas (Figs 3b and d).
This azimuthal effect is due to the cos(θAs)cos(θBs) term in eq. (26). Xu & Mikesell (2017) observed this effect and noted that this effect is
frequency independent. The cos term can change sign with the receivers. Therefore the RR kernels can also change the sign of the kernel
values, even if rs moves along the same hyperbola as seen in Figs 3b and 3d. The absolute amplitude difference in the sensitivities between
ZZ and RR kernels is due to the H/V ratio (eq. 26). Depending on the subsurface model, this indicates that either the ZZ or RR kernel could
dominate the stacked kernel (eq. 16) at a particular frequency depending on the H/V ratio.

3.2 Multi-frequency source kernels

We stack the monochromatic source kernels over a frequency band, during which monochromatic kernels interfere with each other. In areas
where these kernels share common sensitivity, the magnitude of sensitivity increases due to stacking. In other areas, the kernels destructively
interfere and the magnitude decreases. Therefore, we observe that the direct Rayleigh waves in CZZ and CRR are sensitive to sources in the
in-line areas (Figs 4a, b, e and f), the so-called stationary-phase zone (e.g. Snieder 2004). In this case we observe the majority of the sensitivity
on the right-hand side of the model because we use a time window around the causal direct Rayleigh waves (Fig. 1b). If we increase the in-line
source strength, the traveltime and waveform energy will increase. This expectation fits the sensitivity sign in the in-line areas (Figs 4a, b, e
and f). For arrivals near the zero-time location (Fig. 1b), we observe that both ZZ and RR taveltime and waveform-energy kernels are sensitive
to seismic sources between the two sensors (Figs 4c, d, g and h).

We also observe the azimuthal effect in the RR kernels. Compared to the ZZ source kernels (Figs 4a, c, e and g), the RR source kernels
(Figs 4b, d, f and h) possess less sensitivity to sources on the sidelobe areas. Thus for direct Rayleigh waves, we can use RR to focus on in-line
seismic sources (Figs 4b and f) and decrease the error in Rayleigh-wave dispersion measurements due to anisotropic source distributions (e.g.
van Wijk et al. 2011; Haney et al. 2012; Xu & Mikesell 2017). For Rayleigh waves near the zero point in cross-correlations, where seismic
sources occur between sensors, RR should help to locate the sources better than ZZ (Figs 4d and h versus c and g).
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4 S O U RC E E S T I M AT I O N S Y N T H E T I C E X A M P L E S

We present three synthetic source inversion examples to demonstrate that multicomponent cross-correlations (CRR and CZZ) better estimate
anisotropic source distributions than CZZ. We use nine sensors in a square array in all examples. The smallest distance between two adjacent
sensors is 450 m. We assume that all seismic sources are distributed on the free surface. In the first two examples, the seismic sources occur
within the array area, with the sources distributed outside of the array in the third example. Each source emits a 10 Hz Ricker wavelet with an
amplitude factor of 1015. The subsurface is the same homogeneous medium (Table 1, True model) as in Section 3. We assume that we know
the subsurface structure and the source wavelet in the inversions. Thus we simulate the observed and synthetic cross-correlations following
Section 3. We use the simulated wavefield to calculate the source kernels (eq. 15). We use both CZZ and CZZ + CRR in the inversions with
waveform and traveltime misfit functions (eqs 1 and 2). In using CZZ + CRR in misfit functions, we weight the cross-correlaions by normalizing
the amplitudes of CZZ and CRR by the corresponding CZZ and CRR waveform maxima of all sensor pairs, respectively. We do this to both
synthetic and observed data using their respective maxima. As a consequence, we scale the ZZ and RR waveform kernels by the synthetic CZZ

and CRR waveform maxima, respectively. We conducted the inversions without scaling the kernels and achieved similar results; however, to
keep the system of equations self-consistent the kernels should be scaled in the same way the waveforms are scaled.

We present the entire inversion algorithm as pseudocode (Algorithm 1). We adopt the frequency band extension strategy (e.g. Virieux
& Operto 2009). We use a large time window in the waveform inversion (Table 2) because in the cross-correlations the Rayleigh waves can
arrive between time zero and the direct-wave arrival time, depending on the different source locations (e.g. Wapenaar & Fokkema 2006).
This time-windowing strategy is in contrast to global earthquake seismology where we have accurate predictions of arrival times for body
waves and Rayleigh waves (e.g. Maggi et al. 2009). If we use a narrow time window in the waveform inversion, artefacts appear outside the
narrow time windows. However, the narrow time window works well for the traveltime inversion, because the traveltime inversion simply
move waveforms forward or backward in time and thus no artefacts appear. We use the same frequency band to calculate the waveform source
kernels and waveform misfit (eq. 1). We measure the traveltime misfits (eq. 2) over the whole frequency band because this measurement is
more robust than in narrow frequency bands. We set the initial source strength at each sensor location to be zero, so we can avoid singularities
at receivers. We smooth the source strength distributions in the traveltime inversions (see Algorithm 1), but not in the waveform inversions,
because the traveltime source kernels possess narrower sensitivity bands than the waveform kernels (Figs 3 and 4). In practice, it is common
to smooth the model parameters or gradients in wave-equation based tomography (e.g. Tape et al. 2007) and active-source waveform inversion
(e.g. Groos et al. 2017). The inversion results are normalized by the maximum source strength, because we focus on relative source strength
distributions, instead of absolute strength distributions.

Algorithm 1 Inversion algorithm

Normalize observed crosscorrelations by global maximums in CZ Z and CR R ;
for i th iteration do

forward source distribution model on Ni using eq. (4) and normalize crosscorrelations;
calculate the misfit, χi , over time window using eq. (1) (waveform) or eq. (2) (traveltime);
calculate adjoint source, f , using eq. (B3) (waveform) or eq. (A9) (traveltime);
calculate the kernel, K , using eq. (15);
for each step size, p j do

update Ni with p j using eq. (20), (smoothing the updated source model with a 30 m 2D Gaussian filter in the traveltime inversion);
forward model using source distribution and eq. (4);
normalize crosscorrelations;
calculate the misfit, χ j ;

find the minimum misfit, min(χ j ), and the corresponding p j ;
if min(χ j ) < Cuχi then

update Ni and achieve Ni+1 using eq. (20),(smoothing the updated source model with a 30 m 2D Gaussian filter in the traveltime
inversion);

else
extend frequency band

In the last frequency band
if |Ni+1 − Ni |/|Ni | < Cs then

stop inversion

4.1 Example 1: One source within array

The sensors surround one source area in this case (Fig. 5a). The inversion results (Figs 5b, c, e and f) estimate the source locations and
strengths accurately, although the initial source distribution model (Fig. 5d) is far from the true source model. We observe that the inverted
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Multicomponent cross-correlation source inversion 1771

Figure 7. Source out-of-array inversion and the corresponding waveforms. (a) The true source strength is zero everywhere except the out-of-array source area
(square). From an initial source model (d), we invert the ZZ traveltimes (b), ZZ + RR traveltimes (c), ZZ waveforms (e) and ZZ + RR waveforms (f). We plot
the synthetic CZZ based on the traveltime inversion result in (g) and based on the waveform inversion result in (h), along with the observed CZZ. Each waveform
here is normalized by its maximum amplitude for comparison.

source distribution from the waveform inversion (Figs 5e and f) are closer to the true source distribution than from the traveltime inversion
(Figs 5b and c); the synthetic waveforms (Fig. 5h) from the waveform inversion results also fit the observed CZZ better. This is because the
waveforms contain not only traveltime information, but also information such as relative amplitudes. Thus, the waveform inversion performs
better than the traveltime inversion. We note that the multicomponent data does not improve the source distribution estimation when we only
use traveltime information. The ZZ + RR traveltime inversion gives a similar source estimation to the ZZ inversion. However, multicomponent
data do help constrain the waveform inversion. In the waveform inversions, ZZ + RR better estimates the source shape than ZZ alone.
Moreover, the synthetic CZZ waveforms from the multicomponent inversion are closer to the waveforms of the observed CZZ (Figs 8g and h).

4.2 Example 2: Two sources within array

Two sources in the array make the observed cross-correlation waveforms more complex than in the one-source case. We observe that more
arrivals exist in the cross-correlations from the two-source area (Fig. 6h) than from one-source area (Fig. 5h). We use the same initial source
model as in the one-source case. The initial source strength model is far away form the true source model, so the corresponding synthetic
waveforms are not similar to the observed waveforms. As the traveltime inversion mainly moves waveforms on the time axis, the synthetic
waveforms from the traveltime inversion do not fit the observed data. For complex waveforms in the observed data (Fig. 6g), where there are
more than one arrival, we determine that the synthetic data from the traveltime inversions will not fit the observed data. Thus the traveltime
inversion gives incorrect, single-location estimations (Figs 6b and c). However, the waveform inversion can handle the complex observed
data because the waveform inversion can fit multiple arrivals. We estimate accurate source locations and relative strengths with the waveform
inversion, and the synthetic CZZ from the inversion results fit the observed CZZ well (Fig. 6h). ZZ + RR waveform inversion recovers the
source shapes better than ZZ waveform inversion.
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Figure 8. Traveltime and waveform inversion misfit comparisons. We show Example 1 (a and b), Example 2 (c and d), and Example 3 (e and f). The stars
indicate when we extend the frequency bands (Table 2). We show the misfits over the whole frequency band, 2–16 Hz, relative to the initial misfit at each
iteration.

4.3 Example 3: Sources outside of array

Seismic sources lie outside of the array in this example. Thus neither method perfectly recovers the source shape as in the two previous
examples (Fig. 7). With the traveltime inversions, we determine that the inversion accurately provides an estimation of the directions of source
locations, along with artefacts inside the array (Figs 7b and c), while the waveform inversion recovers the source location decently well
(Figs 7e and f). Although the ZZ + RR waveform inversion gives a similar result as the ZZ waveform inversion, the final misfit for ZZ + RR
is less than for ZZ (Fig. 8f).

4.4 Analysis of inversion results

We observe that in the traveltime inversion examples, multicomponent data do not help to resolve the source distribution. In Example 1, ZZ
+ RR gives a simiar misfit over the whole frequency band (2–16 Hz) as ZZ (Fig. 8a). We ignore interpretation of Example 2 because the
traveltime inversion does not work for this case as we explain in Section 4.2. When sources are outside of the array, ZZ + RR gives a weaker
artefact inside the array (Fig. 7c) than does ZZ, but still neither traveltime inversion gives a correct result.

The multicomponent data improve the waveform inversion in all three examples. ZZ + RR better estimates the source shapes for in-array
sources and gives lower misfits than ZZ regardless of whether sources are in the array or not (Figs 8b, d and f). In Example 3, we observe that
ZZ + RR provides a similar estimation of seismic source distribution and a close misfit to ZZ (Fig. 8f).

We also present seismic source estimation using matched-field processing (MFP) on the three examples (Fig. C1). The MFP results
recover true source locations, but also many artefacts. We demonstrate that MFP is equivalent to a waveform source kernel where the initial
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Figure 9. Source inversion results with a higher-velocity model (Table 1, Higher). The black empty squares indicate the shapes and locations of the true
sources. We only show the Example 3 ZZ+RR waveform result in a certain area because the source locations from the inversion are within this area. The initial
models are as same as in Section 4.

source strengths are zeros everywhere (Appendix C). These artefacts are suppressed by the waveform inversion and thus disappear in the
inversion results (Figs 5e, 6e and 7e). One could use MFP results as an initial source model for the waveform inversion.

5 D I S C U S S I O N

In this paper we introduce the theory needed to estimate source strength distribution from cross-correlations using multicomponent full-
waveform inversion. We apply this theory to multicomponent field data in a companion paper, but here we comment on common data
processing notions for completeness. To calculate ambient seismic noise cross-correlations, one usually adopts pre-processing procedures,
such as time-domain normalization, frequency-domain normalization, or various stacking procedures (e.g. Shapiro et al. 2005; Yao et al.
2006). The normalization procedures change the cross-correlation waveforms and spectra (e.g. Bensen et al. 2007; Groos et al. 2012),
as well as the apparent source strength distribution (e.g. Fichtner 2014). In order to estimate true source strengths, we do not use these
normalization procedures. However, because the stacking procedure can mitigate random uncorrelated noise (e.g. Bensen et al. 2007), in real
cross-correlations, stacking is used; keeping in mind that it is difficult to suppress the main source of noise in cross-correlations, which is
localized correlated noise.
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Figure 10. Source inversion results with a lower-velocity model (Table 1, Lower). The black empty squares indicate the shapes and locations of the true
sources. We only show the Example 3 results in a certain area because the source locations from the inversion are within this area. The initial models are as
same as in Section 4.

We present noise-free examples in this paper to demonstrate the physics of the problem and the properties of the adjoints. We address the
topic of noise more thoroughly in our companion paper, noting that the quality of vertical- and horizontal-component data can be improved by
burying receivers below the surface (e.g. Hutt et al. 2017). For clarity here, we present three simple examples of one or two seismic sources
within or outside of the array. The maximum number of sources we can estimate depends on the chosen misfit function (i.e. traveltime or
waveform), the array geometry (i.e. the number of sensors and the inter-sensor distance), and the complexity of the sources (if sources cancel
each other, e.g. Wapenaar & Fokkema 2006; Halliday & Curtis 2008). Further study of the topic of how many sources can one locate is
beyond the scope of this research.

We make four assumptions in the cross-correlation source distribution inversion procedure presented here:

(i) seismic sources are only distributed on the free surface;
(ii) seismic sources are independent from each other;
(iii) the subsurface velocity model is known;
(iv) the source spectral shapes are similar and known.

We make the first assumption because we are concerned with only fundamental mode Rayleigh waves (e.g. Halliday & Curtis 2008).
Moreover, the ambient seismic noise >2 Hz is mainly due to human activity (e.g. Yamanaka et al. 1993) and composed of surface waves.
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Figure 11. Traveltime and waveform inversion misfit curves with true, higher and lower velocity models (Table 1).

These seismic sources (e.g. traffic) usually occur on the surface or at shallow depths. We note that one could use the same theory and focus
on body waves in the cross-correlations to locate seismic sources in depth. However, reverse-time migration is commonly used to locate
the microseismic sources in depth (e.g. Artman et al. 2010), and we present the link between the cross-correlation source inversion and
microseismic reverse-time migration in Appendix C. The second assumption is often made in seismic interferometry (e.g. Weaver & Lobkis
2001). We discuss the third assumption in this section, and a discussion of the fourth assumption is provided in our companion paper, which
considers field data.

Biased subsurface velocity models have been shown to lead to biased source locations (e.g. Billings et al. 1994; Eisner et al. 2009). We
use two incorrect velocity models (Table 1 Higher and Lower), where one has higher and the other has lower velocities than the true velocity
model. We use the same data, the same inversion strategies and the same initial source models as in Section 4. We observe that we do not
recover accurate source locations, shapes of source areas, nor the number of source areas with the incorrect velocity models (Figs 9 and 10).
This phenomenon is expected because with these incorrect velocity models, the cross-correlations attribute the source to incorrect locations.
For the same phase of a cross-correlation, ω(rAs − rBs)/c in eq. (24), if we use an incorrect velocity, the rAs − rBs will be larger or smaller than
when using true velocity. Therefore the source inversion will place sources at the wrong locations (Figs 9 and 10).
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We observe that the waveform inversion for all three synthetic data achieves the lowest final misfit with the true velocity model, as
does the traveltime inversion for one source within the array (Fig. 11). This observation indicates that one can potentially estimate the source
distribution and subsurface velocity structures through one inversion because the true source distribution and true subsurface velocities give
a global minimum in the misfit function (Figs 11a, d, e and f). In practice, one estimates the source and velocity model iteratively (e.g. Lee
et al. 2014) or simultaneously (e.g. Sager et al. 2018). We also observe that the multicomponent data, ZZ + RR, constrain the estimation
better because the final normalized waveform misfit for the true velocity model is the smallest and for the incorrect velocity model is larger
than ZZ.

6 C O N C LU S I O N

We estimate the anisotropic source distribution of Rayleigh waves with vertical and multicomponent cross-correlation inversion in this paper.
We assume that we know the subsurface structure. Through three synthetic examples, we show that multicomponent cross-correlations (CZZ

+ CRR) do not help the traveltime inversion, but do help to resolve seismic source distributions more accurately than only the vertical
cross-correlations (CZZ) in the waveform inversion. For the waveform inversion, both CZZ and CZZ + CRR provide accurate source distributions
for seismic sources within array, while CZZ + CRR estimates the source shapes better. The CZZ + CRR waveform inversion gives a lower misfit
than CZZ for sources within and outside of the array. We also note that the cross-correlation waveform inversion performs better than the
traveltime inversion. If the initial source model is far from the true source distribution, the traveltime inversion can not fit the observed data,
and thus gives biased estimations. The waveform inversion is more robust to the initial source model because the waveform inversion can fit
complex observed waveforms with multiple arrivals. If sources are outside of array, the traveltime and waveform estimate rough directions
instead of exact source shapes. Neither traveltime or waveform inversion works if the subsurface velocity model is incorrect. However, for the
waveform inversion and the in-array one-source traveltime inversion, the true subsurface velocity model can give lower final misfit compared
to incorrect velocity models. CZZ + CRR makes the waveform misfit difference even larger than CZZ, and thus better constrains estimation of
the seismic source distribution and subsurface velocity model. The source inversion we use in this paper not only handles seismic sources
located at the free surface, but also in depth.
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A P P E N D I X A : T R AV E LT I M E A D J O I N T S O U RC E S

We compute the perturbation of the traveltime misfit function (eq. 2) as:

δχ = (Tsyn − Tobs)δ(Tsyn − Tobs) = (Tsyn − Tobs)δT, (A1)

where T = Tsyn − Tobs represents the travel-time difference between synthetic and observed waveforms. Fichtner et al. (2017) derived an
expression for δT. We present the main steps here. The travel-time difference, T, is measured by cross-correlation (Fig. A1) and is determined
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Figure A1. An illustration of the traveltime difference, T, between synthetic and observed cross-correlations.

as the cross-correlation maximum (e.g. Luo & Schuster 1991; Dahlen et al. 2000):

T = max

[∫
Cmn(rA, rB, τ )[w(τ − t)Co

mn(rA, rB, τ − t)]dτ

]
, (A2)

where w(t) is a time window and Co
mn is the observed data. The time derivative of the max function argument at t = T is zero. Thus we can

write∫
Cmn(rA, rB, τ )

d

dt
[w(τ − t)Co

mn(rA, rB, τ − t)]t=T dτ = 0. (A3)

We then write the traveltime perturbation to T and Cmn as:∫
δCmn(rA, rB, τ )

d

dt
[w(τ − t)Co

mn(rA, rB, τ − t)]t=T dτ

+
∫

Cmn(rA, rB, τ )
d2

dt2
[w(τ − t)Co

mn(rA, rB, τ − t)]t=T δT dτ = 0, (A4)

→ δT = −
∫

δCmn(rA, rB, τ ) d
dt [w(τ − t)Co

mn(rA, rB, τ − t)]t=T dτ∫
Cmn(rA, rB, τ ) d2

dt2 [w(τ − t)Co
mn(rA, rB, τ − t)]t=T dτ

. (A5)

One usually assumes that the observed waveform is a time-shifted copy of the synthetic waveform, [w(τ − t)Co
mn(rA, rB, τ − t)]t=T =

w(τ )Cmn(rA, rB, τ ). In this case, we can rewrite the integrand of eq. (A5) as

d

dt
[w(τ − t)Co

mn(rA, rB, τ − t)]t=T = − d

dτ
[w(τ )Cmn(rA, rB, τ )],

and
d2

dt2
[w(τ − t)Co

mn(rA, rB, τ − t)]t=T = d2

dτ 2
[w(τ )Cmn(rA, rB, τ )].

Thus eq. (A5) becomes:

δT =
∫

δCmn(rA, rB, τ ) d
dτ

[w(τ )Cmn(rA, rB, τ )]dτ∫
Cmn(rA, rB, τ ) d2

dτ2 [w(τ )Cmn(rA, rB, τ )]dτ
, (A6)

or in the frequency domain on a frequency band, [ω1, ω2]:

δT = i

∫ ω2
ω1 ωδCmn(rA, rB, ω)[w(ω) ∗ Cmn(rA, rB, ω)]∗dω∫ ω2
ω1 ω2Cmn(rA, rB, ω)[w(ω) ∗ Cmn(rA, rB, ω)]∗dω

. (A7)

Finally, we write eq. (A7) with an adjoint source (f) for a single frequency (ω)

δT =
∫ ω2

ω1
f (ω)δCmn(rA, rB, ω)dω, (A8)

where

f (ω) = i
ω[w(ω) ∗ Cmn(rA, rB, ω)]∗∫ ω2

ω1 ω2Cmn(rA, rB, ω)[w(ω) ∗ Cmn(rA, rB, ω)]∗dω
. (A9)

If we assume that we know the Green’s functions (eq. 4), we can write

δT =
∫ ω2

ω1

∫
V

Gmp(rA, rs, ω)G∗
np(rB, rs, ω) f (ω)δSp(rs, ω)drsdω, (A10)
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and we can write the source kernel for δT as

Kmn(ω, rs) = Gmp(rA, rs, ω)G∗
np(rB, rs, ω) f (ω). (A11)

eq. (A11) does not require observed data. Thus we use eq. (A11) in Section 3 to analyse the traveltime source kernels. This formulation
assumes that the observed waveform is close to the synthetic waveform. As the assumption is not valid in our synthetic data examples, we do
not adopt eq. (A11) in the actual inversion algorithm.

In the traveltime inversions (Sections 4 and 5), we combine the kernel eq. (A11) with eq. (A1) as:

K o
mn(ω, rs) = (Tsyn − Tobs)Kmn(ω, rs)

= (Tsyn − Tobs)Gmp(rA, rs, ω)G∗
np(rB, rs, ω) f (ω). (A12)

A P P E N D I X B : WAV E F O R M A D J O I N T S O U RC E S

We write the perturbation of the waveform misfit function (eq. 1) following Fichtner et al. (2017):

δχ =
∫

[w2(t)(Cmn(rA, rB, t) − Co
mn(rA, rB, t))]δCmn(rA, rB, t)dt (B1)

= 1

2π

∫
[w(ω) ∗ w(ω) ∗ (Cmn(rA, rB, ω) − Co

mn(rA, rB, ω))]∗δCmn(rA, rB, ω)dω, (B2)

where δCo
mn(rA, rB, ω) = 0. The corresponding adjoint source is defined as

f (ω) = 1

2π
[w(ω) ∗ w(ω) ∗ (Cmn(rA, rB, ω) − Co

mn(rA, rB, ω))]∗. (B3)

In Section 3 where there is no observed cross-correlation, we write the adjoint source as (Fichtner et al. 2017)

f (ω) = 1

2π
[w(ω) ∗ w(ω) ∗ Cmn(rA, rB, ω)]∗. (B4)

A P P E N D I X C : T H E L I N K A M O N G WAV E F O R M S O U RC E I N V E R S I O N,
M AT C H E D - F I E L D P RO C E S S I N G A N D R E V E R S E - T I M E M I G R AT I O N

We can relate the waveform source inversion with the matched-field processing. If we assume that there are no seismic sources in the initial
source distribution model, Cmn(rA, rB, ω) will be equal to zero. We can write the waveform source equation by combining eqs (9) and (B2) as

δχ = − 1

2π

∫ ∫
V

[Co
mn(rA, rB, ω)]∗Gmp(rA, rs, ω)G∗

np(rB, rs, ω)δSp(rs, ω)drsdω, (C1)

where we neglect the time window term w(ω). We then rewrite the observed cross-correlation, Co
mn(rA, rB, ω) = U o

m(rA, ω)[U o
n (rB, ω)]∗,

where U o
m(rA, ω) is the observed m-direction component seismic recording at rA. The cross-correlation at a single frequency is a component

of the cross-spectral density matrix in matched-field processing (e.g. Cros et al. 2011). We now write the source kernel in eq. (C1) explicitly
as

K = −[U o
m(rA, ω)]∗U o

n (rB, ω)Gmp(rA, rs, ω)G∗
np(rB, rs, ω), (C2)

and rewrite eq. (C1) as

δχ = − 1

2π

∫ ∫
V

K δSp(rs, ω)drsdω. (C3)

In practice, we stack the kernel among all sensor pairs and the stacked kernel reads as

K = −
∑
rArB

[U o
m(rA, ω)]∗U o

n (rB, ω)Gmp(rA, rs, ω)G∗
np(rB, rs, ω). (C4)

We can recognize the stacked kernel is a conjugation of the linear (Bartlett) processor in matched-field processing (e.g. Cros et al. 2011;
Corciulo et al. 2012) without autocorrelation terms:∑
rArB

G∗
zz(rA, rs, ω)U o

z (rA, ω)[U o
z (rB, ω)]∗Gzz(rB, rs, ω), (C5)

where people usually use vertical component (Z) data. Therefore the matched-field processing results are similar to the stacked waveform
source kernels where the initial source strengths are zero. We apply the matched-field processing to the ZZ data in Section 4 and estimate the
seismic source strengths shown in Fig. C1. We calculate the Rayleigh-wave phase velocity for the halfspace model (Table 1 True), 1391 m s–1

(Rayleigh 1885). We use eq. (23) as the Green’s function in MFP (eq. C5) and estimate source distributions for each example in Section 4
(Figs C1a, b and c). We observe that high source strength values concentrate near the sensors and the true source locations. The singularities
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Figure C1. Matched-field processing (MFP) results from the ZZ data in Section 4. We use the full Rayleigh-wave Green’s function (eq. 23) in MFP (a, b and
c), and we only use the phase part of the Green’s function (eq. 23) in MFP (d, e and f). The black empty squares indicate the shapes and locations of the true
sources.

at the sensors are due to the amplitude term in the Green’s function,
√

1
8πωr/c . If we also only use the phase part of the Green’s function, the

singularities disappear (Figs C1d, e and f). The singularity also exists in the waveform inversion and that is why people adopt a taper near
sources and receivers or smooth the gradient (e.g. Groos et al. 2017).

We can also relate this kernel (eq. C2) to reverse-time migration. If we assume that Co
mn(rA, rB, ω) is due to a microseismic or secondary

source, r
′
, we can write the kernel as

K = [Co
mn(rA, rB, ω)]∗Gmp(rA, rs, ω)G∗

np(rB, rs, ω) (C6)

= [U o
m(rA, r ′, ω)]∗U o

n (rB, r ′, ω)Gmp(rA, rs, ω)G∗
np(rB, rs, ω) (C7)

= [Um(rA, r ′, ω)G∗
mp(rA, rs, ω)]∗[Un(rB, r ′, ω)G∗

np(rB, rs, ω)]. (C8)

We recognize that the kernel, eq. (C8), is the microseismic imaging condition [e.g. Artman et al. 2010, eq. (4)] in the frequency domain.
Therefore the imaging condition in reverse-time migration is similar to the waveform source kernel with zero initial source strength.

A P P E N D I X D : F O U R I E R T R A N S F O R M C O N V E N T I O N

We use the following Fourier transform convention

U (ω) =
∫ ∞

−∞
u(t)e−iωt dt, (D1)

as opposed to

U (ω) =
∫ ∞

−∞
u(t)eiωt dt (D2)

(e.g. Aki & Richards 2002; Haney & Nakahara 2014).
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